当前位置:群走网>实用文>学习计划>数学学习计划

数学学习计划

时间:2026-02-03 03:19:07 学习计划 我要投稿

关于数学学习计划合集9篇

  时间过得太快,让人猝不及防,我们的工作同时也在不断更新迭代中,此时此刻需要为接下来的工作做一个详细的计划了。计划怎么写才不会流于形式呢?下面是小编精心整理的数学学习计划9篇,欢迎大家分享。

关于数学学习计划合集9篇

数学学习计划 篇1

  (一)制定合理学习计划,及时检查落实。

  1.制定符合自己的实际情况的学习计划。

  2、要有明确的学习目标。

  通过一个阶段的学习,要达到什么水平,掌握那些知识等,这 些都是在制定学习计划前应该非常明确。

  3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来 促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。

  4、 要合理安排计划。 计划不能太古板, 可根据执行过程中出现的新情况及时做适当调整。

  5、措施落实要有力。可附带制定计划落实情况的'自我检查表,以便监督自己如期完成学 习目标。

  (二)做好课前预习,提高听课效率。

  通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先 理解感知新课的内容(如概念、定义、公式、论证方法等) ,为顺利听懂新课扫除障碍。

  1、预习的最佳时间是晚上的 8:00 到 9:00 这一段时间,单科的预习的时间一般控制 在 15 分钟到 30 分钟左右。

  2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的 概貌也就是大体内容。二、细读,对重要概念、公式、 法则、定理反复阅读、体会、思考, 注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系 中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过 练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。

数学学习计划 篇2

  一、分析及策略

  学生进入初中已经一学年了, 学生层次不齐情况有所加剧,两极分化厉害。所以如何能够大面积提高学生的数学成绩,使他们从怕学、厌学,不会学转变为想学乐学会学,这是摆在教师面前的一道难题。这就要求我们数学老师根据学生的实际情况,因地制宜以学生为主体进行教学。我们除了教以外,而且要研究当前数学发展和教学的新动向,深入研究教材,细致剖析学生,研究新的教学手段和方法。总之,把教研、教学两者有机结合起来,因材施教,积极稳妥进行教学改革,利用学校先进的多媒体的优势,力争提高每一个学生的数学水平。现制定如下工作计划:

  1.抓好“备课”、“上课”两个中心环节。坚持在集体备课的基础上,充分发挥个人的教学长,从而更加有效地提高课堂教学效率。在教学中,不断进行教学反思,形成不断反思,不断调整,不断提高的教学风格。

  2.教研组老师之间互相听课、互相学习,以开阔眼界。

  3.多用多媒体教学,加快改革的步伐。

  4.做好单元复习和测验工作,尽可能做到周周清、章章清、节节清。

  5.按照学校和教研组的要求写好教案和课件的上传工作。

  6.做好培优补差工作,将这一工作渗透到每一节课中。对数学基础特差的学生,发现问题及时解决或补漏。

  二、认识与思考:

  1、题材源于生活:教学要基于学生的生活

  学生的学习热情和积极性,很大程度上取决于他们对呈现材料的兴趣,选取他们身边熟悉的例子现身说法,不仅能极大地调动学生的学习积极性,更能使知识得到较持久的保持,以便深入理解,为进一步建构知识奠定较好的基础。

  2、突出解决问题:让学生经历探索数学知识的过程

  解决问题是数学活动的核心,围绕问题的解决过程,让学生经历观察、猜想、验证、推理、交流等丰富的数学活动,力求体现“问题情境——建立数学模型——解释、应用与拓展”的模式。不仅可以体会一个数学问题是怎样提出来的、一个数学结论是怎样得出来的,而且通过在这个充满探索和自主体验的过程中,使学生逐步学会数学的思想方法和如何用数学去解决问题,并且获得成功的体验。

  3、给予足够空间:改善学生的学习方式

  数学课程标准指出:“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。”“动手实践、自主探索与合作交流是学生学习数学的重要方式。”展现小组活动、合作学习的`学习方式和民主的学习气氛。通过每一节课的教学,使孩子们“在探索的过程中形成自己对数学的理解,在与他人交流的过程中逐步完善自己的想法”,改进学生的学习方式才是最根本的。

  4、精心设计问题:培养学生的问题意识

  学生能否从数学的角度观察生活和周围事物,从而发现和提炼出有价值的数学问题是其数学意识强弱的重要标志。学生的问题意识越浓厚,意味着对数学现象、成因、规律、关系的探索越深刻、越充分、越独特,也就越有利于学生个性的发展。培养学生提出问题、解决问题的能力是教学目标的重要组成部分。

  5、建立良好的师生关系

  时刻严格要求自己,不断提高自己的业务修养、理论修养和品德修养,真正做到以情动人,以理服人,以德感人。

数学学习计划 篇3

  数与代数部分

  1、一、二单元(数的认识和比较)

  (1)强调数物体个数的方法:按照一定的顺序和方向数数、做记号、根据物体摆放的规律按群数数等。

  (2)加强区分几个和第几个,在表示第几个时要注意说明方向、顺序。如:从左往右数,第2个是()

  (3)按顺序填数,按规律填数

  (4)加深对0的理解:在不同情境中,0的含义是不同的。一般情况下0表示没有,还表示“起点”和温度计上的“基准”0度。要依据具体情况,判断0的含义。

  (5)重视比较方法的梳理:一一对应比较(P17、(1)(2))、

  三者之间的比较(先两两比较,再选出最大、多、小、少的)

  利用参照物进行比较(P17(4)和P19、5、6)

  注意题目规定的符号别标错了

  2、三、七单元(数的运算)

  (1)利用学具摆一摆、捆一捆,加深对数位和数的组成的认识。

  (2)用丰富的游戏活动使本版块的复习变得不枯燥。游戏是一年级儿童最喜欢的活动。游戏让学生在玩中复习,在复习中玩,在玩与复习相结合中发展。如复习20以内数的认识,让学生玩猜数(小棒有多少根)等游戏,加深数感。又如加减法计算的复习,避免出现单纯的题海练习,让学生厌倦。可以设计爬梯子、找朋友、对口令、开火车、抢答等游戏活动,学生边玩边熟练加减法的正确计算。在本期结束时,学生要达到每分钟能正确计算8道题左右。

  (3)重视逆向思维题型的.训练,如:()+6=15,尤其是()-7=7,学生容易填成0。

  在○里填上“+”或“-”9○6=1516○5=11

  (4)对于解决简单实际问题的复习:

  ①从类型上分包括求和、求差、求部分数。并注意体现三种类型之间的联系,注重系统练习。

  如:8个苹果,5个梨,苹果和梨一共多少个?

  苹果比梨多多少个?

  梨比苹果少多少个?

  一共13个水果,苹果有8个,剩下的是梨梨有多少个?

  一共13个水果,梨有5个,剩下的是苹果苹果有多少个?

  再如:看图列四道算式

  ②从呈现方式上看可分为形象图、情境图、部分抽象的文字表示。

  注意强调计算为问题服务的意识,看清题上要求的是什么。允许部分学生用()表示要求的数。

  如:P38,4图1

  ③应用连加、连减、加减混合解决问题,学生容易理解的是如:P45,1题,动态的呈现形式,包括去掉一部分又来了一部分。较难理解的是P47,4题,这种静态呈现的。

  ④加强培养学生提问的意识和能力。

  3、八单元(认识钟表)

  (1)了解自己一天的----,如在什么时候做什么事以及这些事情发生的大概时间。结合生活实例叙述,熟悉生活中常见时间,促使学生关注生活中的时间。

  (2)几时刚过和快几时了,容易混淆,加强辨析。

  (3)有的钟面上没有数字或只有几个数字,给认读造成一定的困难,这是需要学生自己标出数字认读。

  空间与图形部分五单元(位置与顺序)六单元(认识物体)

  (1)对基本概念的理解和掌握。两件或多件物品的前后、上下、左右位置关系的正确描述。

  如:在最面;在的面;的面是;的面有;从数…

  (2)对于相对性的理解:上下、前后、左右的位置不是一成不变的,当物体位置变换或增加、减少物体时,这些位置关系都会发生相应的变化。如:P58,1题中的闹钟,和玩具猫比,它在玩具猫的下面,和模型船比,它在模型船的上面。前后与左右的位置也存在这种相对性。

  (3)一年级的学生,确定情境图中物品或人物左右的位置时,都以观察者为标准来确定左右。

  (4)加强区分长方体与正方体

  (5)面对数量众多的物体,要分类数。养成数时按顺序、做记号、检查验证的好习惯。

  统计与概率四单元(分类)九单元(统计)

  (1)体验分类结果在单一标准下的一致性、不同标准下的多样性。

  如:P53按要求分一分(把序号填在括号里),圈出不同类的物体。

  (2)加强学生整理数据的能力。如安排一些图形(各种不同的颜色、形状、大小,摆放位置也无序)

  请学生先数一数,再在方格纸内画图,并回答简单的问题。

数学学习计划 篇4

  所以,现在同学们在复习准备的时候一定要利用好每一分每一秒。

  制定详细周密的学习计划

  这里所说的计划,不仅仅包括总的复习计划,还应该包括月计划、周计划,甚至是日计划。努力做到这一点是十分困难的,但却是非常必要的。我们要把学习计划精确到每一天,这样才能利用好每一天的时间。

  当然,总复习计划是从备考的第一天就应该指定的;月计划可以在每一轮复习开始之前,制定未来三个月的学习计划。以此类推,具体到周计划就是要在每个月的月初安排一月四周的学习进程。那么,具体到每一天,可以在每周的星期一安排好周一到周五的学习内容,或者是在每一天晚上做好第二天的学习计划。并且,要在每一天睡觉之前检查一下是否完成当日的学习任务,时时刻刻督促自己按时完成计划。

  方法一:规划进度

  分别制定总计划、月计划、周计划、日计划学习时间表,并把它们贴在最显眼的地方,时刻提醒自己按计划进行。

  方法二:互相监督

  和身边的同学一起安排计划复习,互相监督,共同进步。

  方法三:定期考核

  定期对自己复习情况进行考察,灵活运用笔试、背诵等多种形式。

  分配好各门课程的复习时间

  一天的时间是有限的`,同学们应该按照一定的规律安排每天的学习,使时间得到最佳利用。一般来说上午的头脑清醒、状态良好,有利于 背诵记忆。除去午休时间,下午的时间相对会少一些,并且下午人的精神状态会相对低落。晚上相对安静的外部环境和较好的大脑记忆状态,将更有利于知识的理解 和记忆。据科学证明,晚上特别是九点左右是一个人记忆力最好的时刻,演员们往往利用这段时间来记忆台词。因此,只要掌握了一天当中每个时段的自然规律,再 结合个人的生活学习习惯分配好时间,就能让每一分每一秒都得到最佳利用。

  方法一:按习惯分配

  根据个人生活学习习惯,把专业课和公共课分别安排在一天的不同时段。比如:把英语复习安排在上午,练习听力、培养语感,做英语试题;把政治安排在下午,政治的掌握相对来说利用的时间较少;把专业课安排在晚上,利用最佳时间来理解和记忆。

  方法二:按学习进度分配

  考生可以根据个人成绩安排学习,把复习时间向比较欠缺的科目上倾斜,有计划地重点复习某一课程。

  方法三:交叉分配

  在各门课程学习之间可以相互穿插别的科目的学习,因为长时间接受一种知识信息,容易使大脑产生疲劳。另外,也可以把一周每一天的同一时段安排不同的学习内容。

数学学习计划 篇5

  一、复习目标:

  (1)使所学知识系统化、结构化、让学生将三年的数学知识连成一个有机的整体,更利于学生理解;

  (2)精讲多练,巩固基础知识,掌握基本技能;

  (3)抓好方法教学,引导学生归纳、总结解题的方法,适应各种题型变化;

  (4)做好综合题训练,提高学生综合运用知识分析问题的能力。

  二、复习方法与措施:

  1、挖掘教材,夯实基础,重视对基础知识的理解和基本方法的指导

  通过将近3年的学习,学生已经掌握了一定基础知识、基本方法和基本技能,但对教材的理解是零碎的、解题规律的探究是肤浅的。因此,在组织学生进行总复习的时候,首先引导学生系统梳理教材、构建知识结构,让各种概念、公理、定理、公式、常用结论及解题方法技巧,都能在学生的头脑中再现。例如:分式的化简求值,学生应想到分解因式的方法、提公因式法、公式法等,证明三角形全等马上想到全等三角形的所有判定。教学中,要立足课本,充分挖掘和发挥教材例、习题的潜在功能,引导学生归纳、整理教材中的基础知识、基本方法,使之形成结构。例如:课本上课题学习等。坚决克服那种重难题、重技巧、轻课本、轻基础的做法。

  2、抓好教材中例题、习题的归类、变式的教学。

  在数学复习课教学中,挖掘教材中的例题、习题等的功能,是大面积提高教学质量的需要。因此在复习中根据教学的目的、教学重点和学生实际,引导学生对相关的例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的例习题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。

  3、强化训练,注重应用,发展能力

  数学教学的最终目的,是培养学生创新意识、应用意识,及综合能力。教师可以自觉地、有目的地加以培养。这样,就可以大大地加快数学能力的形成和发展,使各种思维方法合理、简捷,最大限度地发挥学生创造性能力。分析近几年来各省市的中考能力题:在学生已有的基础上,可以通过阅读理解,推理分析,总结规律,归纳其结论;联系实际,注重应用,培养探索、发现、创新能力是中考命题必然趋势。因此在组织学生进行复习时,利用创意新颖、贴近学生生活的应用性、实践性、创造性、开放性问题来激活学生的思维。

  4、进行各种数学思想与数学方法的训练,提高学生的数学素质。

  理解掌握各种数学思想和方法是形成数学技能技巧,提高数学的能力的前提。初中数学中已经出现和运用了不少数学思想和方法。如转化的思想,函数的思想,方程思想,数形结合思想等。数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法。这些方法要按要求灵活运用。因此复习中针对要求,分层训练。

  (1)采取不同训练形式。一方面应经常改变题型:填空题、判断题、选择题、简答题、证明题等交换使用,使学生认识到,虽然题变了,但解答题目的本质方法未变,增强学生训练的兴趣,另一方面改变题目的结构,如变更问题,改变条件等。

  (2)适当进行专题训练。用一定时间对一些方法进行专题训练,能使这一方法得到强化,学生印象深,掌握快、记忆牢。

  5、面向全体学生,实行分层教学

  由于学生学习数学能力差异较大,我们应该具体研究现阶段各层次学生最欠缺什么知识与能力,最需要提高哪方面的数学技能,寻找出他们存在的差异和问题,进而有选择、有重点地实行突破性分层教学,对不同层次的`学生提出不同的要求,优等生可鼓励他们超前学习,中等生进行引导,后进生进行帮扶,特别要关心数学学习困难的学生,通过学习兴趣的培养和学习方法的指导,使他们达到最基本学习要求。例如:学困生平时我们应多鼓励少些打击,发现优点及时表扬和肯定,增强他们的学习自信心和学习兴趣,中等生应给予他们更多的引导和关心,让他们觉得只要在努力以下自己会更优秀,那么对待优等生就应该严格要求他们,让他们要做好其他同学的榜样。

  6、对能力有差异的学生进行分层要求

  每次考试结束,我们老师都会对试卷进行分析,但我们也应更多的让学生反思自己,学困生的基础题做对了几道,能力题突破了多少,成绩是否达到了自己的预期目标,卷面整齐程度如何;中等生对难题做到了哪一问,和上次比较有哪些进步和不足;优等生为什么没拿满分,为什会出现小失误,简单的计算题为什么会做错。不同层次的学生通过反思自己存在的问题,每次减少不必要的失误,使得成绩能稳步提高。

  7、合理使用好纠错本

  纠错本是毕业班学生必备的一个东西,学生把每次考试的错题进行归纳、整理,最好把自己的错误答案也能摘录下来,用不同颜色的笔来区分错误答案和正确答案,每次考试前,复习时只需要翻阅,看自己曾经那类问题掌握的不好,下次一定要注意,使得每次的失误减到最少。

  三、数学总复习的课堂结构

  数学复习课怎么上?怎么上效果最好?是所有数学老师头疼的问题,我觉得主要从以下几个方面入手:

  1、复习整理

  本环节主要是解决基础知识的梳理问题,教师要采用不同的形式,引导学生整理本单元的每课时基础知识,使内容条理画,清晰地呈现在学生面前,最好是让学生提前去预习。对重点、难点、疑点和关键,要有针对性地进行讲解,提高对基本知识、基本方法和知识点理解准确性。教师通过引导学生揭示所复习内容的知识结构,既可加深学生对知识的理解,又有利于学生对知识的记忆。

  2、精选例题,揭示规律

  通过典型例题的讲解,进一步巩固复习内容,熟练掌握数学思想方法,提高学生分析问题、解决问题的能力。

  (1)精选例题要有利于抓准基础知识

  数学的基本概念、法则、定理、性质和公式等,分散在各个章节中,复习的选例就要围绕和含盖这些知识来选例,使每道例题都尽可能包含若干知识点,并注意在覆盖所有知识点的基础突出重点与难点。精选例题要包含最基本的数学思想方法,不必追求偏、怪、难;不要贪多,要重视一题多解、一题多变在培养学生解题能力中的作用。

  (2)例题的讲解不是要让学生会做这道题,而是要引导学生切实掌握解题的核心和本质,培养学生分析和解决问题的能力,解题规律要总结,例题解答之后,要引导学生反思、总结解题的经验教训,对一些常用的数学思想方法、解题策略要予以归纳概括、揭示规律,提示学生今后注意运用。

  3、强化训练

  在完成模拟训练后要留下自我纠错和消化的时间,做好自我整理,并有跟踪练习,确保下次遇到类似题型绝不再错。学数学的目的是为了用数学,近年来各地中考涌现出了大量的形式活跃、趣味有益、启迪智慧的好题目,对这些热点题型认真复习,专项突破。

  4、课堂总结

  这是对整节课的系统和概括,是全部教学活动的落脚点和归宿,课堂总结应从以下几个方面考虑:

  (1)完整地归纳概括复习内容,阐明复习内容与其前后知识间关系。

  (2)概括总结数学思想方法,说明适应范围和应注意的问题。

  (3)对复习中暴露出的突出问题要进一步强调,必要时可选配一些有针对性的课外练习。

  总之,在初三数学总复习中,发掘教材,夯实基础是根本;共同参与,注重过程是前提;精选习题,提质减负是核心;强化训练,发展能力是目的。只有这样,才能以不变应万变,以一题带一片,开发学生的思维空间,真正训练学生的综合能力及水平,达到预期复习的效果。

数学学习计划 篇6

  一、第一轮复习(3月10号——4月10号)

  第一轮复习的形式

  第一轮复习的目的是要“过三关”:(1)过记忆关。必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。(2)过基本方法关。如,待定系数法求二次函数解析式。(3)过基本技能关。如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。基本宗旨:知识系统化,练习专题化,专题规律化。在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计与概率等;将几何部分分为六个单元:相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。复习完每个单元进行一次单元测试,重视补缺工作。

  第一轮复习应该注意的几个问题:

  (1)必须扎扎实实地夯实基础今年中考试题按难:中:易=1:2:7的比例,基础分占总分(120分)的70%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

  (2)中考有些基础题是教材上的原题或改造,必须深钻教材,绝不能脱离教材。

  (3)不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性的、典型性、层次性、切中要害的强化练习。

  (4)注意气候。第一轮复习是冬、春两季,大家都知道,冬春季是学习的黄金季节,五月份之后,天气酷热,会一定程度影响学习。

  (5)定期检查学生完成的作业,及时反馈老师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等办法进行反愧矫正和强化,有利于大面积提高教学质量。

  (6)从实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。课堂复习教学实行“低起点、多归纳、快反辣的方法。

  (7)注重思想教育,不断激发他们学好数学的自信心,并创造条件,让学困生体验成功。

  (8)应注重对高层生的培养。在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美,以提高中考优秀率。对于接受能力好的同学,课外适当开展兴趣小组,培养解题技巧,提高灵活度,使其冒“尖”。

  二、第二轮复习(4月11号——5月10号)

  第二轮复习的形式

  如果说第一阶段是总复习的基础,是重点,侧重双基训练,那么第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。第二轮复习的时间相对集中,在一轮复习的基础上,进行拔高,适当增加难度;第二轮复习重点突出,主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥老师的主导作用。可进行专题复习,如“方程型综合问题”、“应用性的函数题”、“不等式应用题”、“统计类的`应用题”、“几何综合问题”,、“探索性应用题”、“开放题”、“阅读理解题”、“方案设计”、“动手操作”等问题以便学生熟悉、适应这类题型。

  第二轮复习应该注意的几个问题

  (1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。

  (2)专题的划分要合理。

  (3)专题的选择要准、安排时间要合理。专题选的准不准,主要取决于对课程标准和中考题的研究。专题要有代表性,切忌面面俱到;专题要由针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题的特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。

  (4)注重解题后的反思。

  (5)以题代知识,由于第二轮复习的特殊性,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。

  (6)专题复习的适当拔高。专题复习要有一定的难度,这是第二轮复习的特点决定的,没有一定的难度,学生的能力是很难提高的,提高学生的能力,这是第二轮复习的任务。但要兼顾各种因素把握一个度。

  (7)专题复习的重点是揭示思维过程。不能加大学生的练习量,更不能把学生推进题海;不能急于赶进度,在这里赶进度,是产生“糊涂阵”的主要原因。

  (8)注重资源共享。

  三、第三轮复习(5月11号——6月10号) 第三轮复习的形式

  第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。备用的练习《历届中考真题》、《中考模拟试题》。

  第三轮复习应该注意的几个问题

  (1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。

  (2)模拟题的设计要有梯度,立足中考又要高于中考。

  (3)批阅要及时,趁热打铁,切忌连考两份。

  (4)评分要狠。可得可不得的分不得,答案错了的题尽量不得分,让苛刻的评分教育学生,既然会就不要失分。

  (5)给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给与讲解。

  (6)详细统计边缘生的失分情况。这是课堂讲评内容的主要依据。因为,边缘生的学习情况既有代表性,又是提高班级成绩的关键,课堂上应该讲的是边缘生出错较集中的题,统计就是关键的环节。

  (7)归纳学生知识的遗漏点。为查漏补缺积累素材。

  (8)处理好讲评与考试的关系。每份题一般是两节课时间考试,两节课时间讲评,也就是说,一份题一般需要4节课的时间。

  (9)选准要讲的题,要少、要精、要有很强的针对性。选择的依据是边缘生的失分情况。一般有三分之一的边缘生出错的题课堂上才能讲。

  (10)立足一个“透”字。一个题一旦决定要讲,有四个方面的工作必须做好,一是要讲透;二是要展开;三是要跟上足够量的跟踪练习题;四要以题代知识。切忌面面俱到式讲评。切忌蜻蜓点水式讲评,切忌就题论题式讲评。

  (11)留给学生一定的纠错和消化时间。老师讲过的内容,学生要整理下来;老师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。老师要充分利用这段时间,解决个别学生的个别问题。

  (12)适当的“解放”学生,特别是在时间安排上。经过一段时间的考、考、考,几乎所有的学生心身都会感到疲劳,如果把这种疲劳的状态带进中考考场,那肯定是个较差的结果。但要注意,解放不是放松,必须保证学生有个适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的最佳状态。

  (13)调节学生的生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。

  (14)心态和信心调整。这是每位老师的责任,此时此刻信心的作用变为最大。

数学学习计划 篇7

  学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)

  学习时间:3月份-6月份

  学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容

  学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。

  学习计划:

  一、3月24号上午9:00----11:00

  不定积分

  1.原函数、不定积分的概念;

  2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;

  3.会求有理函数和简单无理函数的积分.

  定积分

  1.定积分的概念和性质,定积分中值定理;

  2.定积分的换元积分法与分部积分法;

  3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;

  4.反常积分的概念与计算;

  5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.

  :本章的基础课后习题

  二、3月31号上午9:00----11:00

  微分方程

  1.微分方程及其阶、解、通解、初始条件和特解等概念;

  2.变量可分离的微分方程及一阶线性微分方程的解法;

  3.齐次微分方程的解法;

  4.线性微分方程解的性质及解的结构;

  5.二阶常系数齐次线性微分方程的解法;

  6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.

  作业:本章的基础课后习题

  三、4月7号上午9:00----11:00

  来总部阶段测评

  四、4月14号上午9:00----11:00

  多元函数微分学

  1.二元函数的概念与几何意义;

  2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;

  3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;

  4.多元复合函数一阶、二阶偏导数的求法;

  5.隐函数存在定理,计算多元隐函数的偏导数;

  6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.

  作业:本章的基础课后习题

  五、4月21号上午9:00----11:00

  重积分

  1.二重积分的概念和性质,二重积分的中值定理;

  2.会利用直角坐标、极坐标计算二重积分.

  级数

  1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;

  2.几何级数与级数的收敛与发散的条件;

  3.正项级数收敛性的比较判别法和比值判别法;

  4.交错级数和莱布尼茨判别法;

  5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;

  6.函数项级数的收敛域及和函数的概念;

  7.幂级数的收敛半径、收敛区间及收敛域的求法;

  8.幂级数在其收敛区间内的基本性质(和函数的.连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;

  9.函数展开为泰勒级数的充分必要条件;

  10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

  作业:本章的基础课后习题

  六、4月28号上午9:00----11:00

  行列式

  1.行列式的概念和性质,行列式按行(列)展开定理.

  2.用行列式的性质和行列式按行(列)展开定理计算行列式.

  3.用克莱姆法则解齐次线性方程组.

  作业:本章的基础课后习题

  对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式

  七、5月5号上午9:00----11:00

  矩阵

  1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.

  2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.

  3.方阵的幂与方阵乘积的行列式的性质.

  4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.

  5.伴随矩阵的概念,用伴随矩阵求逆矩阵.

  6.分块矩阵及其运算

  作业:本章的基础课后习题

  八、5月12号上午9:00----11:00

  总部考试

  九、5月19号上午9:00----11:00

  向量与线性方程组

  1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.

  2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.

  3.非齐次线性方程组解的结构及通解.

  4.用初等行变换求解线性方程组的方法.

  5.维向量、向量的线性组合与线性表示的概念

  6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.

  7.向量组的极大线性无关组和向量组的秩的概念和求解.

  8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.

  作业:本章的基础课后习题

  十、5月26号上午9:00----11:00

  矩阵的特征值和特征向量

  1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.

  2.规范正交基、正交矩阵的概念以及它们的性质.

  3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.

  4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.

  5.实对称矩阵的特征值和特征向量的性质.

  作业:本章的基础课后习题

  二次型

  1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.

  2.正交变换化二次型为标准形,配方法化二次型为标准形.

  3.正定二次型、正定矩阵的概念和判别法.

  作业:本章的基础课后习题

  十一、6月2号上午9:00----11:00

  考试

  十二、6月9号上午9:00----11:00

  随机事件和概率

  1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.

  2.概率、条件概率的概念,概率的基本性质.

  3.会计算古典型概率和几何型概率.

  4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.

  5.事件独立性的概念与计算.

  作业:本章的基础课后习题

  随机变量及其分布

  1.随机变量的概念,分布函数的概念及性质.

  2.独立重复试验的概念与有关事件概率的计算.

  3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.

  4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.

  5.随机变量函数的分布.

  作业:本章的基础课后习题

  十三、6月16号上午9:00----11:00

  多维随机变量及分布

  1.多维随机变量的概念,多维随机变量的分布的概念和性质.

  2.二维离散型随机变量的概率分布、边缘分布和条件分布.

  3.二维连续型随机变量的概率密度、边缘密度和条件密度.

  4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.

  5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.

  6.两个随机变量简单函数的分

  作业:本章的基础课后习题

  十四、6月23号上午9:00----11:00

  考试

  十五、6月30号上午9:00----11:00

  随机变量的数字特征

  1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.

  2.会运用数字特征的基本性质,并掌握常用分布的数字特征.

  3.随机变量函数的数学期望.

  4.切比雪夫不等式.

  作业:本章的基础课后习题

  大数定律和中心极限定理

  1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

  2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)

  作业:本章的基础课后习题

  样本及抽样分布

  1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.

  2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.

  3.正态总体的常用抽样分布.

  作业:本章的基础课后习题

  矩估计和最大似然估计

  1.参数的点估计、估计量与估计值的概念.

  2.矩估计法(一阶矩、二阶矩)和最大似然估计法.

  作业:本章的基础课后习题

  7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。

  7月底到8月中旬:暑假强化班

  学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。

数学学习计划 篇8

  1 第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

  2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

  6.掌握极限的性质及四则运算法则.

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  2第二阶段复习计划:

  复习高数书上册第二章1-3节,需达到以下目标:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  3 第三阶段复习计划:

  复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

  1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的.导数.

  2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

  3.掌握用洛必达法则求未定式极限的方法.

  4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  4 第四阶段复习计划

  复习高数书上册第四章 第1-3节。需达到以下目标:

  1.理解原函数的概念,理解不定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  5 第五阶段复习计划

  复习高数书上册第五章第1-3节。达到以下目标:

  1.理解定积分的几何意义。

  2.掌握定积分的性质及定积分中值定理。

  3.掌握定积分换元积分法与定积分广义换元法.

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  6 第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

  2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。

  3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

数学学习计划 篇9

  新的学期,新的起点、新的目标、新的希望,新的举措、新的成效。让我们数学教研组所有的老师们在新学期一如既往、精诚团结、共同开创新学期的教学教研新局面!为了更好地落实数学教研组的工作,为了让教师们更好地发展,为了让我们的数学课堂充满勃勃活力和生机,为了让我们的教学质量不断得以提高。特制定本学期的教研计划如下:

  一、开展课堂教学研究

  1、切实抓好本校数学优秀教师、骨干教师的带头作用,提高本校数学教师的教学技能。教师之间要互相帮助,取长补短,要加强协作活动,青年教师要大胆尝试,勇于创新,不断实践,善于总结。争取学校之间的联研活动,切实研讨课堂教学的效率问题,探讨教师集体备课活动的新路子。

  2、提高教学质量的关键在于平时的课堂教学,本学期我校将继续坚持每周四的教研活动,采用理论学习、座谈交流等形式开展有针对性和实效性的教研活动,教研活动以听课+交流+反思的过程进行,通过上公开课——组织听课——讨论评议,课后写好课后反思,以此改进教学方法,深化教学改革,共同提高教育教学水平。

  二、加强教师备课质量的提高

  1、努力提高老师们的备课能力,坚持周前备课,教案的备写要规范化,教案的.设计要结合本班实际和教师个人特点设计切实可行,易教易学的教案。要从教学过程的设计中看出教师是如何教的、学生是如何学的、知识是怎样生成的、基础知识是怎样训练的、能力是怎样培养的、学生的积极性是怎样调动的等等。

  2、教研组将组织人员,对教师备课情况和教案使用情况进行调研,切实改进只用教学策略的形,不落实策略的精神的现象。本学期将对优秀数学教案进行评选。

  三、抓青年教师的指导与培养

  1、切实组织好青年教师的“青蓝工程”,让新教师在最短的时间内熟悉小学数学教学的一般规律,让青年教师尽快的成长为学校的优秀教师。教研组要切实落实好对青年教师的领路工作。组织青年教师研究活动有:骨干教师引领作用、教科研工作培训等。

  2、本学期我校将进行常态下的青年教师课堂教学调研,学校领导将加强听课力度,采用推门进听课、跟踪听课、检查性听课等形式,掌握第一手材料,切实提高青年教师课堂教学实效性。

  四、加强学生作业管理

  本学期我们将继续严把作业质量关,对于作业的设计、布置、批改,力求做到“四精四必”,即“精选、精练、精批、精讲”和“有发必收、有收必批、有批必评、有错必纠”。严格控制作业量及作业时间,减轻学生过重的课业负担,调动学习积极性。作业批改要及时、认真、细致、规范,不允许错批、漏批的现象发生。对学困生的作业要尽量做到面批面改,及时辅导,以增强学习信心,提高学习成绩。具体要求如下:

  1、课堂作业:教师在课堂上要尽量留出时间让学生做作业,教师对部分学生的作业要及时批阅,及时鼓励学生做好作业的信心,调动学生做作业的积极性。作业的书写必需用正楷字,批改要当天完成,每个学生的作业每周至少有一次鼓励性的评语。

  2、家庭作业:一、二年级学生不留书面家庭作业。三至六年级应按规定布置家庭作业。强调分层要求,提高正确率。即:有些题目有些学生可以不做;凡要求做的题目必须书写认真、解题正确,还要保护好作业本。这是习惯培养,是提高学生认真做好作业的责任性的有效举措,很重要。家庭作业的批改可以采用多种形式完成。(家庭作业的量一定要和其他老师协商布置)

  3、数学周记:本学期我校开始尝试进行数学周记的训练。每学期10次,低年级不设置数学周记,中高年级可以适当开放些。

  4、基础训练:除了作为书面作业详细批阅以外,其余部分必需全批全改。

  5、实践作业:一方面要根据教材内容、学生特点布置统一的比如测量、购买、调查等应用知识与技能的内容,另一方面要指导学生用恰当的方式来表达实践性作业的内容。切忌用单纯的计算练习代替实践作业。

  五、提高学生学习的兴趣,加强培优补差工作

  1、要提高学生学习数学的兴趣。努力提高课堂质量,每堂课要以新理念为指导,根据学生的实际情况设计教学方案,力求把数学课上得生动、有趣,使学生乐学、爱学。鼓励各班根据实际情况开展丰富多彩的教学活动。本学期要求各班开展一次数学竞赛活动,创设良好的竞争氛围,激发学生学习数学的兴趣。

【数学学习计划】相关文章:

数学的学习计划08-13

数学学习计划12-16

关于数学学习计划12-12

有关数学学习计划12-11

数学学习计划【推荐】01-22

高考数学学习计划11-30

制定数学的学习计划01-24

高三数学复习学习计划08-29

初三数学学习计划12-14

数学学习计划 15篇12-30